A box management ecosystem to solve the empty container dilemma

We need to re-oriente our thinking towards container management, argues Nicholas Press from CEC Systems.

Visibility is a high priority for shippers and carriers alike. Whether it is rate comparison, booking freight, tracking or monitoring a temperature-sensitive container, visibility is a necessity in today’s market. The growing number of technology providers providing visibility such as Traxens, Savi and EyeSeal and the evolution of interoperability of solutions improvements. The goal in much of these improvements is to provide shippers with more accurate, up-to-date location data and better analytics about where and why cargo bottlenecks occur.

While improving visibility is important, for the industry to achieve sustained improvements it needs to recognize that there are many inputs and relationships that surround the movement of containers which are integral to the successful movement of goods globally. There is a bigger picture that is often overlooked, however. That bigger picture is not solely focused on container transaction but rather, a container ecosystem that encompasses the entire lifecycle of containers and tracking devices – from research & development of hardware, the manufacturing process, ownership, maintenance, loading, booking, and tracking, final delivery, the repositioning and storage of the empty containers and, ultimately, the recycling of the containers.

If the industry is going to generate real efficiencies, there must be a move away from siloed management of containers towards a holistic approach.

Container management must be an ongoing evolution that brings four key areas of focus into an ecosystem. Effective management relies on more than just box optimization, it requires the physical, digital, analytics and services to be considered as equal parts of an overall solution. These four areas form a container ecosystem that when viewed and managed together, offer a comprehensive and integrated solution for the efficient use of containers.

Proper management of empty containers, for example, warrants extra attention as empty containers are one of the most significant areas of lost profit. The four areas (physical, digital, analytics, and services) interconnect and as you look to optimize and create new efficiencies in one area, you must also seek the advancement of the other three. Without a level of concurrent progress, the industry is potentially advancing without the strong foundation required to achieve real efficiencies. For example, as we at CEC Systems continue to evolve the collapsible container design, we will continue to develop and evolve the other areas in unison.

Begin with the physical

Let’s start with the design of the container. The global shipping and logistics industry is losing over $30bn annually on storing, handling and distributing empty containers but the general design of the box has not really evolved over the past 40 years. There is a good reason for this as there needs to be an international standard that allows freight to move across borders, but that doesn’t make it optimal in achieving long-term sustainability.

Instead of waiting for international standards to catch up with changing shipping needs, CEC Systems has developed COLLAPSECON – the world’s first semi-automated Collapsible-Economic-Container that enables four empty units to be collapsed and combined to form a single container, thus significantly reducing the cost of storing, handling and distributing empty containers. By utilising containers that collapse and combine, we are able to achieve a greater level of asset utilisation and availability across the global fleet. The result of this is a reduction in waste, bottlenecks, and congestion throughout the global network and a contribution towards a sustainable industry.

Although the container forms the physical part of the empty container issue it would be a mistake to focus only on this part as it does not take into account the other three container management areas. However, by re-orienting our thinking and making the container itself part of the container management ecosystem alongside tracking, analytics, and services, the combined effect is an improvement in operational efficiency and provisions a better return on investment and reduced environmental impact when compared to standard containers.

Add the digital

While the container itself as a physical item is the primary concern, we cannot proceed as an industry from shying away from the benefits digitalization brings. It is all very well and good that we seek to evolve the box itself, but we must in parallel be seeking to make containers as smart as possible.

As part of the ecosystem, the industry should be aiming to provide a new level of efficiency to tracking and optimizing container movements. If the industry desires real efficiencies, technology should allow a participant to monitor not only the container but the pallet, the box, the packet as well as have the ability to drill down to the level of detail to the individual product inside. Tracking should provide real-time and actionable information and through the use of blockchain, ensure the security and accuracy of data throughout the value chain. Trading partners, as well as service providers, will gain better visibility in their supply chains and understand their true costs of operation. This, in turn, can allow them to remove recurring issues from their network.

Achieving improved container management through the use of digital technologies and tracking may sound like a monumental challenge and very expensive, but in today’s digital age, the cost of technology continues to decline and many solutions exist to provide the level of visibility needed within the ecosystem parameters for improved container management.

Analysis and insights

A growing number of technologies such as sensors are not only tracking container location but also temperature, humidity levels and even the number of bumps along the route. In addition, sensors are sending information to improve the accuracy of data that may not have been caught or able to be managed through manual means.

However, big data is useless unless you can pull “actionable” data out of it. For an ecosystem to work a fundamental breakdown of data and information silos across the network is necessary. The knowledge and data provided by these devices and sensors need to be captured, securely stored in the blockchain and transformed into insights. It is not about generating more data, it is about generating knowledge and understanding to support better decision making.

Members of the ecosystem should be able to analyse their networks at both the macro and micro levels to create transparency, support continuous improvement, and create value for the stakeholders with their investments.

The result being, better analysis, actionable insights, accountability, and greater efficiencies. Not just for the operator or shipper, but for the industry as a whole.

Services to support the ecosystem

Adding to the physical, digital and analytics aspects, in terms of services, we can break this into three different components. There is the maintenance of existing assets, the continuous development of underlying technologies and the support services to enable functionality and operations. These services can include the management of containers, research & development, inspection, repair, requisite training and in the case of collapsible containers, collapsing as a service.

This is incredibly important to understand, as the ecosystem is about more than just a physical container and digital technologies. It’s about ensuring containers and other hardware such as tracking devices and underlying technologies are treated as assets, not commodities. If consideration is not provided then assets become useless before the end of their potential life span. Beyond lost revenue and poor service, the result is the need to build more units at additional financial and environmental costs.

We at CEC Systems envision these supporting services for the ecosystem that is similar to how aircraft are maintained… just far less complicated and life critical. As the fleet owner, we will look to develop our own maintenance services over time but we also will rely on partners in regions to ensure the ecosystem is maintained and users see the greatest benefit.

Not only do these services extend to a deeper level of customer service (satisfaction) but they also prolong the life and utilization of the hardware across the ecosystem, making them a more profitable investment for shippers and carriers alike.

How the ecosystem naturally begets sustainability

In the container management ecosystem, there needs to be greater attention paid not just to what happens when a container is built and used for the movement of goods, but throughout the containers entire life cycle. In particular, as we discussed it above, there needs to be a move away from market dumping/asset write off towards treating containers, other hardware, and software as important assets like ships and ports. In case of containers, for example, that means one needs to consider how containers are made, where materials are sourced from, what materials are used, what quality assurance processes are considered, how they are repaired, how they are used and in the end, how they are properly disposed of.

While they may not be able to be used on the seas, they can be modified for other purposes such as emergency accommodation to support disaster relief or short-term accommodation for those without a home (and in some cases, entire Apartment Communities built out of old containers). There are plenty of options for the faithful box but as part of the physical area of the container management ecosystem, we will end up with thousands of containers spread throughout the world. Where possible, recycling of these assets should be placed as a top priority.

In conclusion

Creating and supporting a container ecosystem creates a holistic approach to container shipping in a way that hasn’t been considered before. In terms of organizational health, the ability to collapse and store four containers in the space of one will go a long way towards saving companies money. By investing in the life cycle of these containers, fewer resources will be poured into making new ones which will also protect both the environment and the profit margin. The hardware and software that goes into managing containers will provide a new level of visibility throughout the supply chain increasing both agility and efficiency. The service offering created through this arrangement not only helps to support the container ecosystem but will also serve to deepen and, subsequently, strengthen the working relationships between collaborating partners.

By re-orienting our thinking towards a container management ecosystem consisting of the physical, tracking, analytics, and services, the combined effect will be a long-term improvement in operational efficiency, better return on investment and reduced environmental impact.

Source: Splash 247

Artificial Intelligence

Shipowners Still Not Ready to Give Up Control to Autonomous Vessels

Shipowners seem to be hesitant to relinquish control of their vessels in favor of autonomous solutions, as they trust their captains and crews more than smart technology.

In general, the shipping industry’s approach to new technologies has been described as “conservative“, especially when it comes to autonomous solutions that could theoretically replace the crew.

This has led to the slow adoption of solutions that are vital to reducing collisions, Yarden Gross, CEO of Orca AI revealed in an interview with World Maritime News.

In order to overcome the maritime industry’s fear of new technology adoption, the company has designed the Orca AI system to be “a tool that the crews can use, not to replace the crew.”

Established in 2018, Orca AI has the vision to reduce human-caused errors through intelligent autonomous vessels. The company was founded by Yarden Gross and Dor Raviv, who both have served in the navy and know the industry and its needs.

“We realized that despite the technological advances being adopted for other modes of transport, the shipping industry is lagging behind. This is due to a variety of factors, including that the maritime environment requires navigation and collision avoidance technology, which need to be specifically suited to the industry and that’s what we seek to provide,” Gross said.

“We want to help create an ecosystem that will lead us to autonomous ships while keeping in mind that we’re not quite there yet.”

He added that there are things that need to be done to improve safety now — providing collision avoidance technology that works for ships.

As informed, 3,000 marine collisions occur each year and more than 75% are due to errors in human judgment. According to Gross, this is alarming as current navigational tools require a significant reliance on human judgment, which leaves room for costly error.

“Our immediate goal was to create a solution that would help ships use AI safely navigate zero and extremely low visibility conditions and crowded waterways, where the majority of collisions take place. Our solution minimizes the opportunity for errors in judgment, thereby reducing the chances of collisions.”

Orca AI system

Specifically, the Orca AI system uses sensors already on board a vessel and adds separate ones as well, such as thermal and low-light cameras, and feeds the information into an AI-powered navigation system.

The system was designed to be easy to use and intuitive, given that the crew manning the bridge is occupied with a myriad of responsibilities, so the system enables them to make smarter navigation decisions more easily. There is no training required to operate the system and it doesn’t add extra work for the crew, Yarden said.

As visibility issues are common and a big contributing factor in naval collisions, Orca AI founders said they decided to tackle that issue right from the start with sensors designed for situations with poor visibility. Orca AI is currently operational and providing crews with crucial information in piloted installations on board vessels. Those pilots are continuing as the company develops new versions of the system.

Installation

Orca AI has been installed and piloted onboard several car carriers owned by Ray Carriers, the company’s first client and key investor.

Data from the voyages that have been taken since the system installation are still being analyzed, but so far everything is looking promising, Orca AI’s co-founder said.

The Orca AI system can be used on any vessel – size is not an issue, as the sensor payload is not very large or intrusive. However, the company is focusing on larger vessels first, as the challenges of collision avoidance and costs of collisions are most pronounced for this class of ships.

“Orca AI’s navigation system is fit for all types of vessels, using information from sensors already on board and supplementing them with cameras of their own in a relatively small payload. We are looking forward to working with different classes of ships, helping them safely navigate crowded waterways and avoid collisions in hard-to-see situations where their difficulty in rapidly adjusting course makes early detection of other ships a priority,” Gross told WMN.

When asked what are the prerequisites for the installation of the Orca AI solution, Gross pointed out that there are no impediments to installing the system on any ship type. The installation is said to be straightforward and the system is easy to integrate on the bridge, so the age of the ship has no impact on the process.

AI and the maritime industry

Several autonomous vessels projects are currently being developed around the world. As informed, Orca AI is in discussions with the large technology providers that are building the eco-system for the future of autonomous vessels. Gross noted that these companies understand that they cannot build everything by themselves, so they are seeking partners to collaborate with.

“An autonomous vessels are like a puzzle, there are many crucial pieces that all need to fit together, and we are trying to build the best technology in the world for one of the most important pieces of the puzzle,” according to Gross.

Artificial Intelligence, which has been the buzzword over the recent time, is becoming increasingly important for the maritime industry as well.

“AI is a tool for solving problems that have been hard to solve until now. For the maritime industry, it is enabling us to tackle issues such as detection of ships and other items on the water, and alerting and assisting the captain and the crew with the navigation of the ship,” Gross said, adding that AI is also helping solve many more problems in the industry such as logistics, predictive maintenance, internal operations, etc.

“I think that for certain use cases AI is already able to provide real value, and as the maritime industry continues to adopt AI solutions and develop them, we will see increased efficiency and safety, as well as seeing a reduction of costs across the board,” Gross concluded.

At the end of January 2019, Orca AI closed a funding round, raising USD 2.6 million. With the help of the new funds, the company plans to grow its engineering ranks and establish an office in Europe this year.

Orca AI’s key steps for moving forward will be to continue installation of the company’s system onboard more ships, which has so far proved to be a major success. Additional partnerships with other shipping companies are currently in the works and Orca AI is ramping up production to meet the growing demand.

Source: World Maritime News

Barcelona to host the 1st World Edition of Startup Weekend focused on the logistics and maritime world

Barcelona will host the 1st World Edition of Startup Weekend focused on the logistics and maritime world, with the support of Google for Entrepreneurs and Techstars bringing together entrepreneurs to solve the major challenges of the sector.

This event will be held during the next weekend of May 17, 18 and 19 at the new facilities of OneCowork. This edition will have the collaboration of different companies and institutions of the logistics sector.

Encouraging entrepreneurship, disrupting the logistics sector and solving major challenges are the goals that this edition of Startup Weekend Barcelona aims to achieve with its new Maritime & Blue Logistics edition in May 2019.

It is expected to bring together the 100 entrepreneurs of different profiles. Businesses, developers, designers and technicians of the logistics sector with business ideas that revolutionise the logistics sector as we know it today, networking and sharing experiences.

On Friday, May 17th, participant will present their business ideas and then the most promising ones will be selected. The objective during the weekend is to work in the business model with countless partners and specialist mentors from the sector to learn, inspire and discover new solutions.

About Techstars Startup Weekend

Startup Weekend ™ is a 54-hour event, in which groups made up of different professional profiles such as developers, business, entrepreneurship enthusiasts, designers and, in this edition, specialists in the logistics sector will be challenged to move from an idea to a product  or business. The teams will work throughout the weekend collaborating to achieve a viable minimum product to submit to the verdict of the jury, composed of executives and specialists in the logistics sector.

Startup Weekend was born in 2007 and by 2016 it has grown to have a global presence. In December 2016, Startup Weekend reached a presence in 140 countries, and more than 1100 cities, involving more than 234,000 enterprising participants. Startup Weekend is a program of Techstars Startup Programs, along with Startup Week and Startup Digest.

Founded in July 2007 in Boulder, Colorado by Andrew Hyde, Startup Weekend brought together 70 entrepreneurs to try to start a startup in just 54 hours. The model quickly expanded to other cities around the world. In 2010, Marc Nager and Clint Nelsen took full ownership and registered the non-profit organisation, moving to Seattle. After the acquisition, Startup Weekend would organize 80 events in the United States, Canada, England and Germany. In December 2010, the organisation had 8 full-time employees, more than 15 facilitators and more than 100 local organizers. In 2016, Startup Weekend is in more than 1000 cities around the world. Startup Weekend is an initiative created by Techstars and has the support of Google for Entrepreneurs .

Important startups have come out of this initiative, which today are consolidated companies such as: Zapier , Foodspotting , Hydrate or Haiku Deck

Maritime & Blue Logistics

We premiered with an event where we expect 100 participants and a team of mentors that will turn this edition into a unique opportunity to update, undertake, network and have fun. The event will be in English and it is expected to obtain an important attendance of both international and local entrepreneurs. For this edition, we have great sponsors, partners and companies that are betting on this initiative such as the logistics company Grupo Romeu , the company accelerator Founder Institute, Marinel-lo Abogados , design agency Jaimitos , ATEIA , Portic , Kantox and the Port of Barcelona .

For more information you can go to : www.startupweekendbarcelona.com

The Escola Europea – Intermodal Transport is collaborating in this event, and as such it can offer a discount of 25% to our students and visitors to our website. To take advantage of this discount, click HERE

Improving Ocean Shipping: Blockchain Reaction

Blockchain technology is capturing interest across the supply chain, and the maritime industry is no exception. Nine ocean carriers and terminal operators are so interested that they recently formed a consortium to develop the Global Shipping Business Network (GSBN), an open digital platform based on distributed ledger technology.

Participants in the consortium include CMA CGM, COSCO Shipping Lines, Evergreen Marine, OOCL, and Yang Ming as well as terminal operators DP World, Hutchison Ports, PSA International Ltd., and Shanghai International Port.

“The new platform, an ecosystem for the shipping community, will connect all shareholders including ocean carriers, terminal operators, customs authorities, shippers, and logistics providers to realize collaborative innovation and digital transformation in the supply chain,” according to a Yang Ming spokesman.

These goals are similar to the expectations expressed by Maersk and Kuehne + Nagel, early adopters of blockchain technology.

In January 2018, A. P. Moller-Maersk and IBM announced plans to pursue blockchain solutions. Then in August 2018, the two companies collaborated to create TradeLens, a blockchain-enabled shipping solution.

Ninety-four organizations are actively involved or have agreed to participate in the TradeLens ecosystem, including 20 port and terminal operators accounting for approximately 234 marine gateways worldwide, Additionally, customs authorities, freight forwarders, and beneficial cargo owners (BCOs) have joined.

Freight forwarder Kuehne + Nagel participates in a blockchain consortium consisting of consultancy Accenture, ocean carrier APL, and shipper AB InBev.

In its most basic form, blockchain is “shared ledger technology” enabling a single, shared, tamper-proof ledger, according to IBM. Once recorded, transactions cannot be altered. Anticipated benefits include less paper processing, increased transaction time speed, and improved efficiencies.

Although it is often used as a single technology, there are two different types of blockchain: public and private. Some of the most commonly known public blockchains are the cryptocurrency ones used for bitcoin transactions. Because these are completely transparent, participants are concerned about dealing with sensitive information, such as commercial contracts.

CARING ABOUT SHARING

Sharing the exact details of contracts and transactions is problematic for freight forwarders, ocean carriers, and shippers. These various stakeholders may collaborate with each other, but not with their competitors. This level of transparency may be an issue with supply chain strategy increasingly becoming a competitive advantage for companies and freight forwarders seeking differentiation in a crowded and fragmented market.

While a consistent wave of ocean carrier consolidation has occurred in the past few years, the remaining players still compete for volume. Empty containers do not generate revenue.

Private blockchains allow users different permission levels, so access can be restricted, and information can be encrypted to adapt to users’ needs.

Transporting goods internationally can become complex, both in terms of physical distribution and cross-border data exchange. Documents related to hazardous cargo, invoicing, cargo release, and other required customs information are vital to the actual movement of goods.

One missing or inaccurate form can keep freight from being delivered. Unlike domestic U.S.-based transportation, global shippers cannot immediately contact a provider and have a new truck dispatched within moments or hours to avert the supply chain implications of a missed or delayed delivery.

One reason the maritime industry is embracing blockchain is to “reform document processes of shipping management,” says a Yang Ming spokesman. The first prototype of GSBN allows shippers to digitize their documents and proceed to automatically exchange data with relevant supply chain parties. This simplifies the complicated documentation process and expedites the delivery of goods.

THE BUSINESS CASE

“Blockchain might not be able to solve, cure, or save everything as the hype suggests, but there are certainly applications where the business case makes sense,” says Adrian Gonzalez, president of Adelante SCM and a supply chain technology analyst. “It makes sense in global trade because of the many different parties, documents, regulations, and financial transactions involved.”

HOW BLOCKCHAIN IS USED IN OCEAN FREIGHT

Kuehne + Nagel’s first blockchain activities date back to 2016, when the concept received board-level support and it began case identification workshop.

“Our approach is to work with customers and business partners on real-world use cases in open and collaborative consortia,” says Inge Ole Ottemoller, senior IT https://www.inboundlogistics.com/cms/article/improving-ocean-shipping-blockchain-reaction/consultant and blockchain expert for Kuehne + Nagel. “Using new technologies such as blockchain is an element of business strategy to continuously improve our processes as well as the business model.”

Fast forward to 2019, and Kuehne + Nagel states there is much work still to be done to achieve the promise of blockchain technology. “Blockchain has the potential to enable further digitalization of existing processes,” Ottemoller notes. “But the technology is still at a very early stage.” .

“With the experience already gained, the technology used at the present time does not yet have the maturity for productive use in extensive, complex applications,” he adds. “In particular, the requirements for maintainability and automated operation are hardly met.”

However, some successes have come from its blockchain consortium, which has focused on one central document in ocean freight: the bill of lading. “The consortium already developed a proof-of-concept for an electronic bill of lading use case from export and import to a common blockchain-based ledger,” reports Kuehne + Nagel.

This group effort “demonstrated how the application of blockchain for issuing and exchanging bills of lading can unleash huge efficiencies for the industry due to seamless and tamper-proof data integration,” says Ottemoller. “The need for printed shipping documents is rendered obsolete.”

Maersk also reports benefits from its adoption of blockchain technology, and specifically, the TradeLens application.

The platform has captured more than 154 million shipping events, including arrival times of vessels and container “gate-in,” and documents such as customs releases, commercial invoices, and bills of lading. In the past, Electronic Data Interchange (EDI) systems shared some of this data in the supply chain.

The TradeLens platform has already proven to be effective. One example Maersk reports is a 40 percent reduction in transit times to ship packaging materials to a production line, avoiding thousands of dollars in costs.

The GSBN consortium hopes to achieve these types of real-world supply chain enhancements. “We are always willing to try innovative technologies to keep up with the digital transformation of the shipping industry in collaboration with others,” says a Yang Ming spokesman.

NEW KIDS ON THE BLOCKCHAIN

The blockchain “revolution” has also lured new players to the market, such as CargoX, a company that created a neutral, open, independent platform available to ocean carriers and other stakeholders. While other consortiums may be limited in the ability to expand or onboard new carriers, “Our platform solves these issues, as it is based on a neutral, open, public Ethereum blockchain network,” notes Stefan Kukman, founder and CEO of CargoX.

Although public, the CargoX platform is secure because the transparency it provides, “only relates to the transparency of time-stamps of certain transactions,” Kukman says. “What is being translated is completely invisible, as the content of the documents and data fields is encrypted and secured from unauthorized viewing.”

Recently, CargoX customer ShipChain completed a successful blockchain-based pilot shipping initiative with Perdue Farms. During the pilot, ShipChain tracked Perdue fleet data and recorded it in the Ethereum blockchain.

Early adopters such as Kuehne + Nagel remain optimistic about the future of blockchain and the maritime industry. The freight forwarder is using the application in the areas of workflow, trade finance, provenance, and visibility.

THE RIGHT DIRECTION

“The development points in the right direction, so it can be assumed that the technology will reach the required level of maturity in the future,” says Ottemoller. “Thanks to the project experience already gained, Kuehne + Nagel is in a position to have an educated judgement on the state of play for this new technology.”

The many companies adopting blockchain platforms share a common vision of the technology’s benefits to the supply chain, and the ocean freight sector specifically. These include:

  • Reduced paper-based processes
  • Reduced waiting time
  • Faster transit times
  • Transparency across processes and company boundaries

QUESTIONS AND MORE QUESTIONS

As additional new entities enter the same space with unique platforms, however, reaching these goals may be a challenge for shippers.

With providers ranging from ocean carriers to freight forwarders to software companies offering different options for blockchain platforms and consortiums, how does a shipper that does not want to work with only one provider deal with the challenge of enabling integration and interoperability between those platforms? With multiple groups working to establish global shipping standards, which standards will ultimately benefit shippers most?

Gonzalez also raises another area of potential concern: Can any technology, new or dated, overcome bad data? “It’s important to note that blockchain doesn’t erase the fact that supply chains still suffer from crappy data,” Gonzalez cautions. “It doesn’t erase the integration challenge of aggregating, cleansing, and linking together data that is spread out across many different applications.

“Some were built in the 1970s, across many companies and countries, some with limited or no IT capabilities and stored in many different formats, including email and faxes,” he adds. “In short, blockchain by itself does not solve the problem of ‘garbage in, garbage out’ data quality problems, but it is a distributed ledger that is better encrypted and traceable.”

DIGITALIZATION AGENDA

Other issues beyond the scope of blockchain alone need to be resolved to improve efficiency in the ocean freight industry. “Digitalization and blockchain are not synonyms,” notes Kukman. “They are tightly connected because the shipping industry is lagging behind in its digital processing.

“But blockchain implementation is just a part of the whole digitalization agenda,” he adds. “And digitalization as such is inevitable—it is time that the paper processing machinery is transformed into modern, trustworthy digital solutions.”

Whether using a CargoX platform or another application for blockchain, the ocean freight industry must embrace technology to “deal with the problems that arise from the snail’s pace of transferring paper documents,” Kukman states. Paper documents can be damaged, lost, or even forged or stolen.

“Those ocean carriers that don’t embrace digitalization will start losing their market share,” predicts Kukman. “Global trade relies on digital data and new services, and this reliance will just get stronger. The carriers that decide to adopt blockchain know what the advantages are.”

End customers will have the greatest benefit in knowing where existing documents, transactions and goods are located, as well as whose turn it is to make the next step in the process,” Kukman adds.

Additional benefits for end users are likely to be realized in the area of forecasting. “The CargoX platform provides new ways of analyzing past business events to support forecasting loads and volume, identifying throughput bottlenecks, and other issues,” Kukman says.

One of the biggest impediments to blockchain and other forms of digitalization is the fact that many companies still rely on paper processes because “that’s the way it has always been done.” That kind of thinking is what will determine winners from losers in the future because, says Kukman, “We don’t ride horses for transportation anymore, do we?”

Source: Inbound Logistics

Automation Lessons from Other Sectors

In a previous insight, Port Technology focused on how automation could impact the employment of both landside workers and seafarers in the shipping industry, where it is predicted that many jobs could be replaced by intelligent machines and systems.

Despite these concerns, maritime is not the only field which automation could seriously effect.

In fact, many other business areas have already changed massively as a result of technological advances like artificial intelligence (AI) and the Internet of Things (IoT).

Manufacturing

Those responsible for driving change in the maritime sector, especially with regard to cargo-handling operations onshore, could look to the example of other industrial sectors like manufacturing when thinking about how to implement automation successfully.

Even a quick comparison of the two areas reveals a number of similarities; materials need to be handled quickly and safely, a repetitive but important process which seems well-suited to the application of robotics.

Skilled professionals in the manufacturing business are likely to share some of the same concerns as their counterparts at ports and terminals, yet it is the combination of a vital human element working alongside robots which is driving efficiency for manufacturers and factories.

The initial cost of automation is higher than paying workers to perform the same job, even if machines are able to outperform the human workforce in some capacities. As with process automation at ports and terminals, the key to success is finding out what should be automated.

Key Takeaways:

  • It is the combination of a vital human element working alongside robots which is driving efficiency
  • The key to success is finding out exactly what should be automated

Warehousing and Distribution

Closely connected to maritime trade and part of the logistics sector, warehousing is a crucial node in the wider supply chain and a hotbed for effective automation.

While the level of technological advancement across warehouses will of course depend on such factors as company size, location and the specific demands placed on any one distribution centre, leading players in the market are following the lead of other industries and expanding their use of robotics.

The question though – for the shipping industry – is how this transition to automated processes can be carried out purposefully.

In the case of XPO Logistics, developing technological solutions fit for purpose has been fundamental.

Collaborating with Singapore-based GreyOrange to deploy 5,000 intelligent robots throughout centres in Europe and North America, the autonomous machines perform a key function within “a modular goods-to-person system” that includes the efficient movement of mobile storage racks.

Key Takeaway:

  • Developing technological solutions fit for purpose
Self-Driving cars

While much of the conversation and early development around automation has concerned the increasing intelligence of landside operations, the impact of smart technologies is not only being felt on shore.

With multiple projects and start-ups currently exploring the possibility of autonomous vessels which can safely navigate from one location to another, even in the presence of other marine traffic, there are many technological hurdles which still need to be jumped.

The growing area of self-driving cars, a mainstream point of discussion in the media today, corresponds quite closely with the less reported interest in autonomous vessels; both have prompted questions regarding safety and security, especially as the digital systems which guide them have not proven entirely immune from attack.

In the case of self-driving vehicles though, standards are being created by the UK Government and other authorities to ensure you have resilient cybersecurity of digital technologies. With several carriers already suffering from major hacks, including COSCO in 2018, establishing the security of pilotless ships should be a priority.

Key Takeaway:

  • Ensure you have resilient cybersecurity of digital technologies

Air Freight

In our modern age of next-day-delivery and thriving e-commerce, it is not surprising that air freight has gained a distinct advantage over ocean shipping. If you can move goods more quickly, you become a more attractive option for the customer.

While the very nature of transporting cargo via air separates this business area from maritime, leading companies in the air freight space are finding ways to boost their efficiency and competitiveness through automation.

Just as digital technologies have been developed to make commercial airlines run more smoothly, cargo planes are using electronic bills of lading and tracking solutions widely to exchange information and ensure that the movement of goods remains transparent and traceable.

Greater visibility ultimately begets greater efficiency, as being able to monitor your supply chain also allows one to plan effectively, especially in situations where delays or other barriers to free movement are experienced. When approaching automation, the maritime sector would be wise to keep this fundamental principle in mind.

Source: Port Technology

How Smart Start-Ups Are Changing Maritime

The role of smart start-ups in driving the development of the maritime sector should not be understated, especially with regard to intelligent applications powered by the Internet of Things (IoT).

As highlighted by a recent competition to form the world’s first digital shipping company, launched by IoT specialist Loginno, there is a demand for companies who can bring new solutions to the table.

The Start-Up Space

Of the multitude of start-ups vying for opportunities within the space of IoT and Big Data, many are part of projects designed to leverage their potential for industry-shifting innovation.

These initiatives are often supported by major companies, and in February 2019 satellite communications provider Inmarsat revealed its partnership with two start-up programmes focused on IoT and the optimization of data.

The need for “fresh perspectives”, as argued by Inmarsat’s Senior Director of Digital Incubation Ali Grey, can be served best by new businesses currently breaking into the sector and shaking its very foundation.

IoT is widely viewed as a key pivot for the industry and target for those wishing to instigate serious change; ABI Research has predicted that IoT applications will be able to track over 500 million different assets by 2023, highlighting its potential.

Solutions for Ports

If IoT is tipped to make waves across the global economy, what kind of impact is this movement likely to have on ports, and what role will be played by start-up organizations?

Maciej Kranz of Cisco Systems describes digitization, and especially IoT, as “powerful enablers that forward-thinking port operators are using in order to improve efficiencies”: the benefits of implementing IoT applications to support cargo-handling processes are various.

One of the areas in which IoT can be leveraged most usefully is the management of port traffic, as the data collected from ships, containers and other vehicles entering and exiting ports can produce a holistic overview of cargo movement that provides a transparent and visible basis for optimization.

IoT is also a technology which complements other advanced systems used by port and terminal operators, functioning alongside automated equipment and TOS systems to allow more effective communication between machines and humans, or even machines and other machines.

Although major companies will often be enlisted to oversee the implementation of advanced technologies, which have to be integrated into port operations without causing serious disruption, start-ups will play an important part in delivering new solutions.

Speaking about the position occupied by start-ups at Smart Ports and Supply Chain Technologies 2018, former Managing Director of Port XL Mare Straetmans emphasized the necessity for collaboration between corporations and emerging businesses.

The Future of IoT Innovation

While start-ups are important components of the rapidly growing IoT ecosystem, development is also being driven by academic bodies and government groups exploring its applications for a broad range of industries, including container shipping.

Autonomous shipping, which is quickly transforming from a futuristic fantasy into a reality, is a good example of the technical platform provided by IoT solutions.

A joint-venture involving the Finnish Geospatial Research Institute and Aalto Universityis seeking to deploy IoT-powered sensor technology as means of ensuring the safe navigation of autonomous vessels, an innovation which is already being trialled.

However, educational bodies and public institutions are also choosing to collaborate with start-ups on groundbreaking projects like this, with solution provider Fleetrange contributing to this initiative by developing techniques for autonomous navigation.

It is evident then that the insight provided by these young, energetic and, above all else, innovative companies, as well as their ability to cut through the noise of the industry, is fostering an environment that is adapting to evolving demands and becoming increasingly modern. It seems likely that success will follow.

Source: Port Technology

European ports welcome agreement on the European Maritime Single Window environment

The European Sea Ports Organisation (ESPO) welcomes the agreement reached on 7 February between the Parliament and the Council on the new regulation establishing a European Maritime Single Window environment (EMSWe). With the new framework, which will repeal the current Reporting Formalities Directive, important steps are made towards reducing administrative burden and increasing the attractiveness of maritime transport. It provides for the creation of a EMSWe dataset, harmonised National Single Windows and the application of the reporting-only-once principle.

We see the agreement as a real breakthrough on this very technical but important matter for the maritime and logistics sector. The outcome provides clear engagements towards administrative simplification and a more efficient supply chain. We are very happy that the new framework is recognizing the bottom-up efforts and investments already made and underway by European ports towards creating a one-stop shop for both the reporting formalities and all other services rendered to stakeholders in the logistics chain. The agreement is thus fully compliant with the ambitious digitalisation agenda of many European ports. We would like to thank and congratulate the Parliament – in particular, the rapporteur, Deirdre Clune and the shadow rapporteurs -, the Romanian Presidency and the Commission for their constructive approach in reaching an agreement”, says Isabelle Ryckbost, Secretary General of ESPO.

ESPO supports the following decisions:

  • Ensuring that the same data sets can be reported in the same way: For European ports, the first priority is to simplify administrative procedures by ensuring that the same data sets can be reported to each competent authority in the same way. ESPO therefore welcomes the emphasis in the new regulation on ensuring that the same data sets can be reported to each National Single Window in the same way by creating a EMSWe maximum dataset. The need to take into account the work carried out at international level is fully backed by ESPO.
  • Asking additional data remain possible in exceptional circumstances: ESPO is very pleased to see that the final text is giving the possibility to Member States to ask in the event of exceptional circumstances, for additional data, for a limited period of time, without having to ask the permission of the Commission.
  • Respect for the existing reporting systems: Moreover, European ports very much support the fact that the new regulation is building on the existing reporting systems, the National Single Windows and Port Community Systems (PCS). It is of paramount importance that ports and shipping lines who are currently working with a PCS as a one-stop-shop for both the reporting formalities and all other services rendered to stakeholders in the logistics chain will be able to continue to do so in the future.
  • Technological neutrality: ESPO is happy to see that technological neutrality is explicitly referred to as the basis for the European Maritime Single Window environment and agrees that the Commission should closely follow the latest technological developments, when providing updates to the reporting interface modules for the National Single Windows.
  • Providing the National Single Windows with a governance dimension: Finally, ESPO also welcomes the new provisions in the agreement on requiring Member States to designate a competent national authority for the National Single Windows with a clear legal mandate. This provides the National Single Window with a governance dimension, giving it the competence to store and redistribute data to the respective authorities.

The agreement reached must now be further formalised by the Council and the Parliament and is expected to apply as from 2025 (six years after the entry into force).

Source: European Sea Ports Organisation Press Release

Barcelona Remains Europe’s Fastest Growing Port

The Port of Barcelona achieved record results in 2018 across all main traffic indicators, solidifying its position as a key facilitator of export activity.

During the financial year 2018, Barcelona handled 67.7 million tonnes of cargo, representing a 10% increase on the port’s total volume for 2017.

According to a statement, the record-breaking volumes were largely driven by a 15% year-on-year increase in container traffic, Barcelona moving 3.4 million TEU during 2018.

Read a Port Technology technical paper by Olaf Merk, International Transport Forum, to understand demand-driven port development.

This rise in container volume underlines Barcelona’s status as the fastest growing port in Europe, as it comes on top of a 32.5% increase already achieved during 2017.

The results also confirm an increase in intermodality, with the significant growth marked in rail transport helping to boost sustainability of the logistics chains passing through the Port of Barcelona.

China has consolidated its role as Barcelona’s main trading partner, with 25% of the containers passing through the port either beginning or ending their journey in the Far East.

“Motorways of the Sea”, regular lines connecting Barcelona with various destinations in Italy and North Africa, progressed in 2018 as well, diverting approximately 150,000 trucks from the road to the “maritime mode”, a more sustainable option.

In economic terms, the port achieved a net turnover of nearly US$198 million, up 4% from the previous year.

The Dawning of 5G

As the digitization of industry and the global economy continues, a necessity for reliable, faster and more secure networks to connect businesses and the global supply chain continues to grow.

It is no surprise then that major companies and service providers, such as IBM and Vodafone, are forming joint-venture initiatives to test and develop a 5G ecosystem which, according to President of Mobile Networks with Nokia, Tommi Uitto, can generate new potential for automated operations and artificial intelligence.

While the worldwide implications of 5G technology are myriad, with leading companies Nokia and China Mobile seeking to create a more open and interoperable form of architecture for high-speed networks, its application to the ports and terminals sector could be game-changing.

As Dr. Yvo Saanen, Founder of simulation specialists TBA Group explains above, there is a need to connect a port’s assets, machines and people to systems, thereby increasing the safety and efficiency of cargo-handling operations.

The ability of 5G to optimize operations and “transmit data safely within milliseconds” is already being trialled as part of the Wireless for Verticals (WIVE) research project, one of many initiatives demonstrating the technology’s value as a catalyst for improved performance.

Faster and Smarter Networks

It would be easy to focus on the speed of 5G alone, especially when the development of this technology is likely to produce much shorter network response times for a wide variety of industries, including the logistics and port sectors.

However, as the University of Surrey’s world-leading 5G Innovation Centre underlines, the next evolution of connectivity is more significant than catering to the individual needs of everyday consumers: 5G is as much about “machine-to-machine” as it is “people-to-people”.

The flexibility of 5G networks, to “evolve, adapt and grow” is vital to the progress and implementation of this next technological phase which will allow applications to perform the “bandwidth-heavy” tasks demanded in the future.

Other benefits of 5G, as explored by key industry players like Nokia, include its prediction capabilities, security and reliability, positioning the technology as a crucial foundation for the development of machine learning tools.

Marc Rouanne, the ex-President of Mobile Networks at Nokia, once stated that “AI and machine learning will enable a myriad of new service opportunities”, in addition to reducing end user costs and minimizing the consumption of energy.

Revolutionizing Ports

Like a whole host of other industries seeking to ride the wave of digitization, businesses in the maritime sector, such as service providers, are hoping to leverage 5G to their collective benefit.

Kalmar, a provider of lifting solutions, is already trialling 5G applications and building a “technology road map” that will make the next stage of connectivity part of the “industrial standard of the future”.

Forecasting the revolutionary potential of 5G, Kalmar’s Director of Automation Research Pekka Yli-Paunu has predicted that “advances in connectivity give us the opportunity to develop the next generation of remote control that may utilise not only video, but audio and haptics as well”.

In addition to this, major ports are conducting their own 5G trials, testing its capability to drive advancement in other areas and provide a bedrock for smarter, more efficient operations.

The Port of Hamburg has already hailed the success of their project, with intermediate results indicating that “5G enables new types of mobile applications for the Hamburg Port Authority’s business”.

Looking ahead, Hamburg has isolated “5G network slicing” as an area that will have a particular impact on operations, laying the “foundation for new IoT applications” and “business models” that will boost the competitiveness of the entire port industry.

Unlocking the Potential

The cooperation of key players from multiple industrial and technological fields is currently forming an access point to 5G for businesses in all sectors.

Nokia has emphasized their work with “a lot of partners in the ports and terminals space, such as Konecranes, to enable the development of a connected ecosystem,” with the company “well positioned to understand the applications and savings made possible by mission-critical wireless technologies”.

According to Nokia’s statistics, ports and harbours make up a significant proportion of its vertical enterprise customers, all of which are currently deploying private LTE networks for their operational campus needs.

In the case of ports like HaminaKotka (located in Finland) the focus of “operational needs” once again shifts to connectivity, correlating to the intelligent machine Dr. Yvo Saanen imagines in his assessment of 5G.

Based on the sound situational awareness of container handling, warehouse logistics, and port security which machine-to-machine and machine-to-person connectivity offers, operations can be improved across multiple areas, from safety and efficiency to environmental performance and cost-effectiveness.

The extent of 5G’s potential impact on ports and terminals is still uncertain, but as operators and service providers search for smarter solutions, and ways to leverage automated technologies, the key word for the future is connectivity.

Source: Port Technology

Portugal Launches Huge Maritime Smart Tech Plan

The Portuguese government has announced an initiative aimed at accelerating the creation of smart tech start-ups in the shipping and ports sectors, according to a statement.

Named ‘Bluetech Accelerator – Ports & Shipping 4.0’, the programme is being led by the Minister of the Sea of Portugal and is designed to make the country a world leader in smart technology innovation.

The government has said it has already established a coalition of stakeholders, including shipping groups Portline Group and ETE Group, the ports of Sines and Leixoes and digital and robotics companies Inmarsat and Tekever to identify and finance start-ups in the smart technology and shipping industry.

The chosen start-ups will be announced in the last quarter of 2019, and the government has said it expects other stakeholders in the maritime and port sector to join the initiative.

Speaking about the initiative, Portuguese Minister of the Sea, Ana Paula Vitorino, said: “The Portuguese port system must be seen as the front line of the implementation of the blue economy based on the operational, energy and environmental innovation of maritime industries, promoting the emergence of new companies.

A recent Port Technology technical paper looked at smart investment in the maritime sector.

“This objective will be possible through the creation of a network of Port Tech Clusters, platforms for accelerating the technological and business innovation of sustainable blue port-based businesses.

“From here will be created new companies that will constitute and reinforce the Port Tech Cluster 4.0, innovation network that will be installed in the national port system focused on the application of industry 4.0 to the maritime-port sector”.

The Port of Sines, a key participant in the scheme, signed an agreement last week with MSC Mediterranean Shipping Company to develop a new, next-gen container terminal, a story PTI covered.

Source: Port Technology